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Solution to Assignment 1

1. Consider the function ϕ(x) = x−a where a is positive for x ∈ (0, 1] and set ϕ(0) = 1 so
that ϕ is a well-defined function on [0, 1]. Show that ϕ is not integrable on [0, 1]. This is
the simplest example of an unbounded function.

Solution. Assume on the contrary that ϕ is integrable on [0, 1] and let its integral be I.
Given any number ε > 0, there is a partition P such that

|
∑
j

ϕ(x∗j )∆xj − I| < ε ,

for any tags on P . (We don’t care about the length of P .) Equivalently,

−ε ≤
∑
j

ϕ(x∗j )∆xj − I ≤ ε .

Taking ε = 1, say, we have ∑
j

ϕ(x∗j )∆xj ≤ 1 + I .

We dispose all summands in the summation above except the first summand to get

1

(x∗1)
a

∆x1 = ϕ(x∗1)∆x1 ≤ 1 + I .

The right hand of this inequality is a finite number. However, if we choose the tag x∗1 very
close to 0, the left hand side could be arbitrarily large, hence this inequality cannot be
true. The contradiction shows that ϕ is not integrable.

Note. Nonetheless, for a ∈ (0, 1) ϕ is improperly integrable. Will discuss it later.

2. Consider the function H in R2 defined by H(x, y) = 1 whenever x, y are rational numbers
and equals to 0 otherwise. Show that H is not integrable in any rectangle.

Solution. Let P be any partition of the rectangle. By choosing tags points (x∗, y∗) where
x∗ and y∗ are rational numbers,∑

j,k

H(x∗j , y
∗
k)∆xj∆yk =

∑
j,k

∆xj∆yk

which is equal to the area of R. On the other hand, by choosing the tags so that x∗ is
irrational, H(x∗, y∗) = 0 so that∑

j,k

H(x∗j , y
∗
k)∆xj∆yk =

∑
j,k

0×∆xj∆yk = 0 .

Depending the choice of tags, the Riemann sums are not the same for the same partition,
hence they cannot tend to the same limit. We conclude that H is not integrable.
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Evaluate ! 1
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because x is an odd function.
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Use Fubini’s theorem to evaluate ! 1
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